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On the evaluation of Dirac traces 

W Becker and "li Schott 
Institut fur Theoretische Physik, Universitat Tubingen, 7400 Tubingen, Germany 

Received 11 May 1976, in final form 11 October 1976 

Abstract. Formulae are given for the most compact evaluation of traces of Dirac matrices in 
the case that a certain matrix p = a"y, and/or the combination @ + m )  occur several times. 
The formulae should also be useful in connection with symbolic computation programs. 

1. Introduction 

Calculating traces of Dirac matrices is a necessary ingredient of many calculations in 
high-energy physics. Whereas traces consisting of only a few matrices are immediately 
written down and traces of intermediate length are conveniently dealt with by symbolic 
computation programs (e.g. REDUCE by Hearn 1973) there is a problem with longer 
traces. Even if the result is comparably simple, the available symbolic computation 
programs may have to handle a huge number of terms at an intermediate stage which 
eventually exceeds the storage capacity of the computer. Or, more likely, the result 
becomes simple only due to an appropriate form of representation. This is hard to 
extract from a term-by-term output of a symbolic computation program. 

In this paper we give formulae for two frequently occurring cases where an essential 
simplification can be achieved. In §§ 2 and 3 we give formulae for the case that a certain 
vector a p  and/or the matrix p+ m occur repeatedly. In 3 4 we make some remarks 
concerning the application of these formulae and give an example. 

The conventions of Bjorken and Drell (1965) are used throughout. 

2. Traces containing a certain vector repeatedly 

The problem of calculating traces seems to be solved by the following formula: 

ik < l k  

where P is the number of permutations necessary to obtain the arrangement of a's on 
the right-hand side of equation (1) from that of the left-hand side. The trace displayed 
in equation ( 1 )  consists of (2n  - l)!! terms which are all different provided all ai are 
different from each other. If, however, some of the vectors ai are equal, extensive 
cancellations reduce the number of terms considerably. The formula given below 
exhibits for that case immediately the final expansion in powers of a', 
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We introduce the notation (which is consistent with the scalar product of two 
vectors) 

(ala2 . . . a2“)  = t Tr g1g2 . . . a2”. 
Let 

B‘” =bl,-1+1b,z-1+2 . . . bl, ( l o = O ,  l i + l s l i + J  

and let B‘” . . . B‘”); bi, . . . bik denote the matrix obtained from B‘l) , . . B‘”’ by omitting 
lfil , . .bi, without changing the order of the remaining matrices. We then have the 
following theorem: 

(uB‘”uB‘~’ . . . aB‘”’) 

=[yl (a2)” max(1, 2 n - 2 u - 1 } x r  ( - l )p(abi l ) (ab ,z ) .  . . 
us0 

x . . . B‘”’ ; bl, ’ . . b k Z ” ) ,  ( 2 )  

The second sum (indicated by a prime) extends over all i l  < i2 < . . . < in-2u subject to the 
condition that for all k < 1, k, I = 1 ,  . . . , n -2v. 

I f  bik E B“‘.) and bi, E B“”, 

then rl - rk is an odd integer: (3) 

The sign (-l)Pof a particular term is obtained as follows. For each scalar product, a’ or 
(abi), draw an arc connecting an a with an a or an a with bi in such a way that the arcs do 
not overlap, but otherwise arbitrarily. Then each arc contributes a factor of ( - l ) N  to 
the sign where N is the number of matrices enclosed by the arc. For example, with the 
trace 

( a  b ,  a b2 b3 a b4 a b5 b6 b7 a bs a b9 blo)  
u u  U - - 

the term proportional to (a2)’(a b3)(a bs)(blb2b4b5b6b7b9blo) contributes with a posi- 
tive sign as indicated. 

Equation (2)  and the accompanying explanations may look more complicated than 
they really are. The crucial point is formulated in equation (3). It means that, for 
example, the trace (abl ab2b3 ab4b5 ab6) contains terms proportional to a2(abl)(ab2), 
U2(Ubl)(Ub6), but not (a2)(abl)(ab4) ,  (abl)(ab2)(ab3)(ab6). The essential achievement 
of equation ( 2 )  is that all terms are really different from each other provided all bi are 
different. 

Equation (2)  is proved by means of the Pfaffian formalism advocated by Caianiello 
(1973). Note that the right-hand side of equation ( 1 )  is just the definition of a Pfaffian. 
There is an expansion theorem for Pfaffians in terms of lower-order Pfaffians. Equa- 
tions (2) and (3) follow readily from this theorem if the expansion is done with respect to 
those elements which are not equal. This turns out to yield an expansion in powers of 

2 a .  
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3. Traces containing # + m repeatedly 

For this case a useful device has been given by Caianiello and Fubini (1952) which we 
review here for our purpose. Let Pi =pi  + mi ; then 

Pi . . . P 2 n  =Pl(-iys)(iy5)P93(-iy5)(iy5)P4 . . . P2n-i(- i~s)( i~s)P2n 

= ~ 1 4 2  * * * 0 2 n - 1 h 2 n  (4) 

P I  . . . P 2 n + l  . . . k ~ , ~ z ~ + l i ~ 5 .  (6) 

In equations (4) and (6) the Pi, consisting of a Dirac matrix and a scalar, are replaced by 
the five component objects Qi such that the matrices r fulfil the same commutation 
relations as the y's.  

The following substitution rule is a simple consequence of equation (4) 
(n  + 1, = even) 

W p 1  + ml)B'l'(E1z+ m2)B") . (P,, + mn)B(") = TrPIB'" . - . @nB (n ) I~,p,)~Go,p,)+(-i)€,~m,m,.  

(7) 

Here el, is the number of y-matrices between @i and @, on the right-hand side of 
equation (7). If one wants to take advantage of the fact that some pi are equal, the 
simple substitution rule (7) becomes ambiguous. In that case one has to make explicit 
use of the five-component formalism described in equations (4)-(6). !f for example allp, 
are equal, one has only to discriminate between 0 and 0; Q2 = Q2 = ( p z -  mZ), but 
{Q, &}= 2(p2+m2). Equations (4)-(6) can now be combined with equations (2)-(3), 
since the proof of the latter only made use of the commutation relations { yw, y y }  = 2g,, 
which hold also for the r's. If things can be arranged such that only Q or 6 occurs, the 
evaluation becomes particularly simple. 

4. Remarks and an example 

As usual, explicit appearance of the matrix y5 does not fit very well in this scheme?. If it 
is possible to construct from the occurring vectors four orthogonal ones a", b,, c,, d,, 
say, it may prove most convenient to replace y5 according to 

y5 = - i ( € a ~ y ~ a u b ~ c y ~ ~ ) - l ~ ~ ~ ~  

t This may look surprising with respect to equations (4)-(6). However, only traces of an even number of 
five-component 0 ' s  are easy to evaluate. Both (4) and (6) incorporate an even number. Traces of an odd 
number do not vanish and there are no simple formulae for them. 
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If there are less than four linearly independent vectors, traces involving ys vanish 
anyway. 

Unfortunately, equations (4)-(7) cannot be combined with the algorithm due to 
Kahane (1968) or its generalization by Chisholm and Hearn (Chisholm 1972), which 
evaluates such products as y,B‘”yYB‘2’y,B‘3’y”B‘4’. This is because the five- 
component Q’s have no definite parity. Equation (7) can also be proved without the 
five-component formalism. Then, the incompatibility arises from the fact that a term 
(pipj)  can result either from a direct contraction or from (p iy”) (p jy , )  = pi”p,,. In the first 
case one should substitute according to (7), but this is not so in the second. Hence, the 
substitution rule cannot apply. Equation (2) may be profitably used, however, after the 
application of Kahane’s algorithm. 

Although the usefulness of the formulae given above is limited by their incompati- 
bility with Kahane’s algorithm they still off er in many cases a tremendous simplification. 
These include calculations in external laser fields (where a lightlike vector occurs at 
every vertex) and the case where the vector propagator is not simply proportional to gFV. 
In the latter case Kahane’s algorithm does not apply at all, but a systematic simplifica- 
tion can be achieved by means of the formulae given above. 

As an example, making use of equations (2)-(3) and (7), the trace 

aTr(kl+m)$1(@+m)@2.. 

of a product of 16 y-matrices is immediately written down to yield (we use the 
abbreviations (pa i )  = (pi), (al a2 u3 a,) = (1 2 3 4), etc, CP= cyclic permutations: 

(p2-m2) , ( l . .  , 8 ) - 2 ( p 2 - m 2 ) 3 [ ( p l ) ( p 2 ) ( 3 . .  . 8 ) + c ~ + ( p l ) ( p 4 ) ( 2  3 5 . .  . ~ ) + c P ]  

+ 8 ( p 2 -  m2)’[(pl)(p2>(p3)(p4)(5 6 7 8) + CP 

+ ( p l ) ( p 2 ) ( ~ 3 ) ( ~ 6 ) ( 4  5 7 8 ) + c p + ( p l ) ( p 2 ) ( ~ 5 ) ( p 6 ) ( 3  4 7 8 ) + c p I  

- 3 2 b ’  - m’)[(p 1 ) ( ~ 2 ) ( ~ 3 ) ( ~ 4 ) ( ~ 5 ) ( ~ 6 ) ( 7  8) + c p I +  128(p l ) (p2)  

. . . (88). 

It was not possible to evaluate this trace on a Telefunken TR 440 computer with 80 K 
using REDUCE in a straightforward way. Moreover, symbolic computation programs 
cannot easily extract factors as ( p 2 - m 2 ) n  from an expression. Thus the output, if 
available, would consist of thousands of terms and not be very useful. 
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